Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38460577

RESUMO

Estrogens and androgens are typical steroid hormones and often occur together in contaminated aquatic environments, but their mixed effects in aquatic organisms have been less well reported. In this study, the endocrine disrupting effects of binary mixtures of 17ß-estradiol (E2) and testosterone (T) in western mosquitofish (Gambusia affinis) were assessed by analyzing the sex ratio, secondary sex characteristics, gonadal histology, and transcriptional expression of target genes related to the hypothalamic-pituitary-gonadal (HPG) axis in G. affinis (from embryos) continuously exposed to E2 (50 ng/L), T (T1: 50 ng/L; T2: 200 ng/L), and mixtures of both (E2 + T1: 50 + 50 ng/L; E2 + T2: 50 + 200 ng/L) for 119 d. The results showed that exposure to E2 + T1 and E2 + T2 reduced the length ratio of ray 4/6 ratio in male G. affinis, suggesting feminized phenomenon in male G. affinis. Furthermore, 16.7-38.5 % of female G. affinis showed masculinized anal fins and hemal spines when exposed to T alone and in combination with E2. Importantly, the transcriptional levels of certain target genes related to the HPG axis were significantly altered in G. affinis following exposure to E2 and T alone and in combinations. Moreover, exposure to E2 and T in combinations can lead to combined effects (such as synergistic and antagonistic effects) on the transcriptional levels of some genes. These results collectively suggest that exposure to environmentally relevant concentrations of E2 and T alone and in mixtures can impact the endocrine system of G. affinis, and may pose potential risks in aquatic systems.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Testosterona/metabolismo , Estradiol/metabolismo , Androgênios/toxicidade , Sistema Endócrino , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Aquat Toxicol ; 268: 106854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309221

RESUMO

The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Etinilestradiol/toxicidade , Metiltestosterona/toxicidade , Poluentes Químicos da Água/toxicidade , Estrogênios , Ciprinodontiformes/genética
3.
Environ Sci Technol ; 58(1): 121-131, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118121

RESUMO

The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 µg/g), copper (32.5 µg/g), and chromium (up to 5.7 µg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , Máscaras , Pandemias , Polipropilenos , Polietilenos
4.
Phytochemistry ; 213: 113774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400011

RESUMO

Two previously undescribed phloroglucinol derivatives [(±) evolephloroglucinols A and B], five unusual coumarins [evolecoumarins A and B and (±) evolecoumarins C-E], and one novel enantiomeric quinoline-type alkaloid [(±) evolealkaloid A], along with 20 known compounds, were isolated from the EtOH extract of the roots of Evodia lepta Merr. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the undescribed compounds were determined by X-ray diffraction or computational calculations. Their anti-neuroinflammatory effects were assayed. Among the identified compounds, compound 5a effectively reduced nitric oxide (NO) production with an EC50 value of 22.08 ± 0.46 µM. Hence, it could indeed inhibit the lipopolysaccharide (LPS)-induced Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome.


Assuntos
Alcaloides , Evodia , Rutaceae , Evodia/química , Cumarínicos/farmacologia , Cumarínicos/química , Floroglucinol/farmacologia , Floroglucinol/química , Alcaloides/farmacologia , Estrutura Molecular , Óxido Nítrico
5.
Aquat Toxicol ; 261: 106635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478585

RESUMO

The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparß (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.


Assuntos
Disruptores Endócrinos , Oryzias , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Oryzias/fisiologia , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo , Poluentes Químicos da Água/toxicidade , Estrogênios/metabolismo
6.
Environ Sci Technol ; 57(8): 3280-3290, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795899

RESUMO

Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 µg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 µg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 µg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 ß-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Estrona/metabolismo , Estrogênios/metabolismo , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
7.
Aquat Toxicol ; 257: 106457, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848693

RESUMO

Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Animais , Feminino , Estrona/toxicidade , Poluentes Químicos da Água/toxicidade , Sistema Endócrino , Gônadas
8.
J Hazard Mater ; 446: 130700, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592560

RESUMO

Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Oryzias/genética , Larva , Estradiol/toxicidade , Estradiol/análise , Sistema Endócrino , Vitelogeninas/genética , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 423(Pt B): 127261, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844370

RESUMO

Androgens androstadienedione (ADD) and androstenedione (AED) are predominant steroid hormones in surface water, and can disrupt the endocrine system in fish. However, little is known about the transgenerational effects of ADD and AED in fish. In the present study, F0 generation was exposed to ADD and AED from 21 to 144 days post-fertilization (dpf) at nominal concentrations of 5 (L), 50 (M) and 500 (H) ng L-1, and F1 generation was domesticated in clear water for 144 dpf. The sex ratio, histology and transcription in F0 and F1 generations were examined. In the F0 generation, ADD and AED tended to be estrogenic in zebrafish, resulting in female biased zebrafish populations. In the F1 generation, ADD at the H level caused 63.5% females, while AED at the H level resulted in 78.7% males. In brain, ADD and AED had similar effects on circadian rhythm in the F0 and F1 generations. In the F1 eleutheroembryos, transcriptomic analysis indicated that neuromast hair cell related biological processes (BPs) were overlapped in the ADD and AED groups. Taken together, ADD and AED at environmentally relevant concentrations had transgenerational effects on sex differentiation and transcription in zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Androgênios , Androstenodiona , Animais , Feminino , Masculino , Razão de Masculinidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
10.
Sci Total Environ ; 805: 150460, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818796

RESUMO

Cyclophosphamide (CP) is a broad-spectrum anticancer drug and has been frequently detected in aquatic environments due to its incomplete removal by wastewater treatment facilities and slow degradation in waters. Its toxicity in fish remains largely unknown. In this study, zebrafish eggs <4 h post fertilization (hpf) were exposed to CP at the concentrations from 0.5 to 50.0 µg/L until 168 hpf, and its toxicity was evaluated by biochemical, transcriptomic, and behavioral approaches. The results showed that malformation and mortality rates increased with CP concentrations. The 7-day malformation EC50 and mortality (LC30) by CP were calculated to be 86.8 µg/L and 7.5 mg/L, respectively. Inhibited startle response (light to dark) (a minimal of 19%) and reduced swimming velocity (a minimal of 30%) were observed in the CP-exposed larvae. The thicknesses of retinal ganglion layer, inner plexiform layer, and inner nuclear layer in the retina were increased after exposure to CP. Meanwhile, exposure to CP increased karyorrhexis and karyolysis in the liver tissue. Transcriptomic analysis identified 607 differentially expressed genes (DEGs) (159 up-regulated and 448 down-regulated). A significant reduction in the transcripts of sgk1 (the FoxO pathway), jun (the MAPK pathway), and diabloa (apoptosis pathway) were observed in the CP-treated larvae. This study has demonstrated that low concentrations of CP cause malformation, reduced swimming capacity, histopathological alterations in the retina and liver tissues, and interference on transcriptional expressions of key genes associated with different pathways. The ecological risk of CP and other anticancer drugs to aquatic organisms merits future investigation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ciclofosfamida/toxicidade , Embrião não Mamífero , Larva , Locomoção , Poluentes Químicos da Água/toxicidade
11.
Water Res ; 209: 117892, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34861434

RESUMO

In recent years, the ecological risks of plastics to marine environments and organisms have attracted increasing attention, especially the leachates from plastics. However, a comprehensive knowledge about the leaching characteristics and subsequent toxicological effects of leachates is still sparse. In this study, 15 different plastic products were immersed in simulated seawater and fish digest for 16 h. The leachates were analyzed through non-target and target analyses and their toxicological signatures were assessed by bioassays. In total, 240 additives were identified from the plastic leachates, among which plasticizers represented the most (16.7%), followed by antioxidants (8.7%) and flame retardants (7.1%). Approximately 40% of plastic leachates exhibited significant inhibitory effects on the bioluminescence using a recombinant luminescent assay. In addition, both the hyperactive and hypoactive behaviors were displayed in the larvae of marine medaka (Oryzias melastigma) exposed to some plastic leachates. In general, the number and amount of identified compounds under simulated fish digest were less than those under simulated seawater. However, the simulated fish digest leachates triggered higher toxicity. Redundancy analysis demonstrated that identified additives did not adequately explain the toxicological effects. Future research should focus on the identification of more additives in the plastic leachates and their potential ecological risks.

12.
Ecotoxicol Environ Saf ; 227: 112917, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34678628

RESUMO

Imidacloprid (IMI) and thiamethoxam (THM) are two commonly applied neonicotinoid insecticides. IMI and THM could cause negative impacts on non-target organisms like bees. However, the information about neurotoxicity of IMI and THM in fish is still scarce. Here we investigated the effects of IMI and THM on locomotor behavior, AChE activity, and transcription of genes related to synaptic transmission in zebrafish exposed to IMI and THM with concentrations of 50 ng L-1 to 50,000 ng L-1 at 14 day post fertilization (dpf), 21 dpf, 28 dpf and 35 dpf. Our results showed that IMI and THM significantly influenced the locomotor activity in larvae at 28 dpf and 35 dpf. THM elevated AChE activity at 28 dpf. The qPCR data revealed that IMI and THM affected the transcription of marker genes belonging to the synapse from 14 dpf to 35 dpf. Furthermore, IMI and THM mainly affected transcription of key genes in γ-aminobutyric acid, dopamine and serotonin pathways in larvae at 28 dpf and 35 dpf. These results demonstrated the neurotoxicity of IMI and THM in zebrafish. The findings from this study suggested that IMI and THM in the aquatic environment may pose potential risks to fish fitness and survival.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Abelhas , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Transmissão Sináptica , Tiametoxam , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
13.
Aquat Toxicol ; 240: 105972, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571414

RESUMO

Levonorgestrel (LNG) and dydrogesterone (DDG) are two commonly used synthetic progestins that have been detected in aquatic environments. They could affect fish sex differentiation, but the underlying mechanisms remain unknown. Here we investigated the effects of LNG (5 ng L-1 and 50 ng L-1), DDG (100 ng L-1) and their mixtures on gonadal differentiation and sex determination in zebrafish at transcriptomic and histological levels from 2 hours post-fertilization (eleutheroembryos) to 144 days post-fertilization (sexual maturity). Germ cell development and oogenesis pathways were significantly enriched in LNG and the mixture of LNG and DDG treatments, while insulin and apoptosis pathways in the DDG treatment. LNG and the mixture of LNG and DDG strongly decreased transcripts of germ cell development and oogenesis related genes, while DDG increased the transcripts of insulin and apoptosis related genes at 28 days post fertilization (dpf) and 35 dpf. Furthermore, DDG caused ∼ 90% males, and LNG and the mixture of LNG and DDG resulted in 100% males on all sampling dates. Specifically, most males in LNG and the mixture of LNG and DDG treatments were "Type I" males without juvenile oocytes at 28 dpf and 35 dpf, while those in DDG treatment were "Type II" and "Type III" males with a few juvenile oocytes. These results indicated that LNG and DDG promoted testicular differentiation via different pathways to cause male bias. LNG and DDG mixtures have similar effect on testicular differentiation to LNG alone. The findings from this study could have significant ecological implications to fish populations.


Assuntos
Didrogesterona , Poluentes Químicos da Água , Animais , Didrogesterona/toxicidade , Feminino , Levanogestrel/toxicidade , Masculino , Diferenciação Sexual , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
14.
Huan Jing Ke Xue ; 42(3): 1185-1190, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742915

RESUMO

An incubation experiment was conducted to explore the influence of 30% water holding capacity (WHC), flooding, and alternate dry-wet conditions on changes in heavy metal fractions with 1% rice straw biochar in Pb and Cd co-contaminated paddy soils, to provide a scientific basis for a water regime of biochar remediation on heavy metal contaminated paddy soil. Results showed that flooding and alternating wet-dry conditions could significantly increase soil pH, the contents of dissolved organic carbon (DOC), and amorphous iron oxide (Feo) after adding biochar. Compared with a 30% WHC treatment, when the soil is flooded and alternating wet-dry conditions, the content of the TCLP extractable Pb decreased by 31.87% and 20.33%, respectively, and the content of the TCLP extraction Cd decreased by 25.29% and 16.07%, respectively. Under flooding, the acid soluble Pb and Cd content decreased by 24.78% and 20.14%, respectively, and the acid soluble Cd content decreased over time. The decreasing order of available Pb and Cd content was flooding > alternating dry-wet > 30% WHC. Correlation analysis results showed that soil pH and Feo have significant negative correlation with available heavy metals, which means flooding with biochar could effectively immobilize Pb and Cd by increasing soil pH and Feo content. Flooding and biochar have a synergistic interaction on promoting the transformation of Pb and Cd to more stable fractions in acidic co-contaminated heavy metal polluted paddy soil.

15.
Bull Environ Contam Toxicol ; 106(4): 594-599, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33570674

RESUMO

Dydrogesterone (DDG) acts on the reproduction but also affects the functioning of non-reproductive system. So far, the knowledge about other effects of DDG remains limited. Here we investigated the effects of DDG on the transcription of genes in innate immune and coagulation cascade in zebrafish embryos. The zebrafish embryos were exposed to DDG at 49.0, 527 and 5890 ng L- 1 for 144 hour post fertilization (hpf). The results showed that DDG significantly decreased the transcription of marker genes (e.g. tnfa, il8 and cc-chem) involved in the innate immune response at environmental concentrations. Moreover, DDG also down-regulated the transcription of genes in coagulation cascade (e.g. fga, fgb, fgg and f2). These results indicated that DDG had potential effects on the innate immune and coagulation cascade functions in the early life zebrafish, thus further affecting fish growth and health.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Didrogesterona , Embrião não Mamífero , Imunidade Inata , Reprodução
16.
Ecotoxicol Environ Saf ; 208: 111566, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396095

RESUMO

Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17ß-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17ß-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.


Assuntos
Ciprinodontiformes/fisiologia , Disruptores Endócrinos/toxicidade , Estradiol/toxicidade , Androgênios/metabolismo , Animais , Ciprinodontiformes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Testosterona/metabolismo , Vitelogeninas/metabolismo
17.
Ecotoxicol Environ Saf ; 208: 111629, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396149

RESUMO

As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to ß-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.


Assuntos
Substâncias Perigosas/toxicidade , Líquidos Iônicos/toxicidade , Membrana Celular/efeitos dos fármacos , Ecossistema , Células HeLa , Humanos , Imidazolinas/toxicidade , Mitocôndrias , Estrutura Secundária de Proteína , Solventes
18.
Phytochemistry ; 182: 112597, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341030

RESUMO

Seven pairs of undescribed enantiomeric bis-coumarins, (±)-dievodialetins A-G, were separated from the roots of Evodia lepta Merr. Two coumarin nuclei were linked via a 1,4-dimethyl4-vinylcyclohexene moiety in (±)-dievodialetins C-G. The structures of the undescribed compounds, including their absolute configurations were elucidated by spectroscopic analyses, X-ray diffraction, and computational calculations. In the biosynthetic pathways, these bis-coumarins were presumably derived from the precursors demethylsuberosin and 3-(3-methylbut-2-enyl)umbelliferone via a [4 + 2] Diels-Alder reaction. Besides, all compounds exhibited neuroprotective effects by inhibiting acetylcholinesterase (AChE) activity with IC50 values ranging from 7.3 to 12.1 nM and they also suppressed oxidative stress (MDA and SOD) and neuroinflammation (IL-1ß and IL-6).


Assuntos
Evodia , Rutaceae , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Estrutura Molecular , Raízes de Plantas/metabolismo , Rutaceae/metabolismo
19.
Biomed Pharmacother ; 130: 110517, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32688141

RESUMO

The flower of Hibiscus syriacus Linn is a well-known traditional Chinese medicine (TCM) and health food in China, which has been used to treat dysentery, vaginal discharge, and hemorrhoids. In this study, five polyphenols (compounds 1-5) and five fatty acids (compounds 6-10) were isolated from the ethanol extract of the flower of H. syriacus. The isolated compounds were characterized by spectroscopic techniques. Polyphenols, an important type of natural product, have variety of biological activities. Here, we employed LPS or H2O2-treated SH-SY5Y cell models to test the neuroprotective effect of compounds 1-10. Results found compounds 1-5 (concentration range was around 20 µM on LPS model, concentration range was around 13 µM on H2O2 model), not compounds 6-10, exhibited neuroprotective effect in LPS or H2O2-treated SH-SY5Y cell. PCR analysis showed that compounds 1-5 can effectively improve the mRNA expression of synapse-related gene and neurotrophic factors (Syp, NGF and BDNF) in LPS-treated SH-SY5Y cell. In addition, compounds 1-5 decreased the levels of ROS and MDA and increased the activities of SOD, GSH-Px and CAT in LPS-treated SH-SY5Y cell. Furthermore, compounds 1-5 inhibited neuroinflammation (TNF-α, IL-1ß and IL-6) in LPS-treated SH-SY5Y cell. In conclusion, the polyphenols in the flower of H. syriacus could be a promising candidate for preventive effect of neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Flores/química , Hibiscus/química , Neurite (Inflamação)/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Humanos , Lipopolissacarídeos , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Neurite (Inflamação)/induzido quimicamente , Neurite (Inflamação)/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
20.
Ecotoxicol Environ Saf ; 193: 110371, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114246

RESUMO

Medroxyprogesterone acetate (MPA) is a widely used synthetic progestin in contraception pills and hormone replacement therapy. However, its effects on eye growth and development and function were largely unknown. In this study, the transcription of genes in the Notch signaling pathway and the visual cycle network were evaluated after chronic MPA exposure at 4.32 (L), 42.0 (M), and 424 (H) ng L-1 for 120 days in zebrafish. Meanwhile, the histology of the eyes was also examined. Transcriptional results showed that MPA at all three concentrations significantly increased the transcription of notch1a, dll4, jag1a, ctbp1 and rbpjb (key genes in the Notch signaling pathway) in the eyes of females. The up-regulation of noth1a, ctbp1 and kat2b was also observed in the eyes of males exposed to MPA at 424 ng L-1. In the visual cycle pathway, MPA increased the transcription of opn1sw1, opn1sw2, arr3a and rpe65a in the eyes of females from the M and H treatments. Histopathological analysis showed that exposure to 42.0 ng L-1 of MPA increased the thicknesses of inner nuclear layer in females and outer segment in males. Moreover, exposure to 424 ng L-1 of MPA increased the lens diameter in females. These results indicated that chronic MPA exposure affected the transcription of genes in the Notch signaling and in the visual cycle pathways, resulting in overgrowth of the eyes and interference of the eye functions. This study suggests that MPA pose a risk to fitness and survival of zebrafish in areas where MPA contamination exists.


Assuntos
Contraceptivos Hormonais/toxicidade , Olho/efeitos dos fármacos , Acetato de Medroxiprogesterona/toxicidade , Animais , Olho/crescimento & desenvolvimento , Olho/patologia , Feminino , Masculino , Receptores Notch/metabolismo , Retina , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...